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System rotation is known to substantially affect the mean flow pattern as well as the
turbulence structure in rotating channel flows. In a numerical study of plane Couette
flow rotating slowly about an axis aligned with the mean vorticity, Bech & Andersson
(1996a) found that the turbulence level was damped in the presence of anticyclonic
system rotation, in spite of the occurrence of longitudinal counter-rotating roll cells.
Moreover, the turbulence anisotropy was practically unaffected by the weak rotation,
for which the rotation number Ro, defined as the ratio of twice the imposed angular
vorticity Ω to the shear rate of the corresponding laminar flow, was ±0.01. The aim
of the present paper is to explore the effects of stronger anticyclonic system rotation
on directly simulated turbulent plane Couette flow. Turbulence statistics like energy,
enstrophy and Taylor lengthscales, both componental and directional, were computed
from the statistically steady flow fields and supplemented by structural information
obtained by conditional sampling.

The designation of the imposed system rotation as ‘high’ was associated with a
reversal of the conventional Reynolds stress anisotropy so that the velocity fluctu-
ations perpendicular to the wall exceeded those in the streamwise direction. It was
observed that the anisotropy reversal was accompanied by an appreciable region of
the mean velocity profile with slope ∼ 2Ω, i.e. the absolute mean vorticity tended to
zero. It is particularly noteworthy that these characteristic features were shared by
two fundamentally different flow regimes. First, the two-dimensional roll cell pattern
already observed at Ro = 0.01 became more regular and energetic at Ro = 0.10 and
0.20, whereas the turbulence level was reduced by about 50%. Then, when Ro was
further increased to 0.50, a disordering of the predominant roll cell pattern set in
during a transient period until the flow field settled at a new statistically steady state
substantially less affected by the roll cells. This was accompanied by a substantial
amplification of the streamwise turbulent vorticity and an anomalous variation of the
mean turbulent kinetic energy which peaked in the middle of the channel rather than
near the walls. While the predominant flow structures of the non-rotating flow were
longitudinal streaks, system rotation generated streamwise vortices, either ordered
secondary flow or quasi-streamwise vortices. Eventually, at Ro = 1.0, the turbulent
fluctuations were completely suppressed and the flow field relaminarized.

1. Introduction
As shown in our previous paper on weakly rotating turbulent plane Couette flow

(Bech & Andersson 1996a, hereafter referred to as BA), this flow case is particularly
well suited for the study of the Coriolis instability in turbulent channel flow. The
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constant sign of the mean vorticity distribution makes the destabilizing (stabilizing)
effects symmetric with respect to the centreline, thereby simplifying the interpretation
of the observed changes in turbulence structure due to system rotation, as compared
to the pressure-driven Poiseuille flow in which the mean vorticity inevitably changes
its sign. Here, we will focus on the destabilized flow where the Coriolis acceleration
is sufficiently strong to impose significant changes in the turbulence anisotropy. Par-
ticular efforts will be made to distinguish between turbulence and the secondary flow
induced by the system rotation, thereby obtaining more detailed physical information
than what has so far been derived from experimental and numerical investigations of
the plane Poiseuille flow (Johnston, Halleen & Lezius 1972; Kristoffersen & Anders-
son 1993; Andersson & Kristoffersen 1995; Nakabayashi & Kitoh 1996, Lamballais,
Lesieur & Metais 1996a, b).

The kinetic energy of the fluctuating flow field is usually used to quantify the
degree of destabilization. Both secondary flow, which does not contribute to the
volume flow, and turbulence are considered as fluctuations about the mean, or
primary flow. If the kinetic energy of the fluctuations is increased by increasing the
rate of system rotation, then the flow is categorized as destabilized. If the fluctuating
flow field becomes less energetic by increasing the rotation rate further, the flow field
is classified as restabilized. The ultimate state of restabilization is the case where both
secondary flow and turbulence vanish. According to the Taylor–Proudman theorem,
this state of total restabilization occurs at infinite rotation rate, see e.g. Greenspan
(1968).

Previous studies of the effect of system rotation on turbulence in shear flows have
sometimes postulated a close relationship between the stability characteristics of the
mean flow, or even laminar flow, and the amplification and damping of turbulence,
see Tritton (1992). As was shown by BA however, the onset of the roll cell instability
may actually lead to damping of the turbulence in plane Couette flow. In experimental
investigations it is difficult to obtain quantitative results simultaneously for secondary
flow and turbulence because the roll cells are not completely steady. Thus numerical
simulations are a feasible source of quantitative results.

For the plane Poiseuille case, Kristoffersen & Andersson (1993) observed that
there was a significant increase in the kinetic energy of the fluctuating field in the
destabilized wall layer when the rotation rate was increased from zero to a relatively
low level, a phenomenon which can be ascribed to the onset of the roll cell instability.
At the highest rotation rate considered by Kristoffersen & Andersson, the wall shear
stress was reduced, thereby indicating a restabilization of the flow. In the studies of
the rotating turbulent Poiseuille flow by Johnston et al. (1972) and Kristoffersen &
Andersson (1993), it was observed that a portion of the anticyclonic (destabilized)
region exhibited approximately zero absolute mean vorticity, i.e. the vorticity in the
inertial frame was zero so that 2Ω−∂U/∂y = 0. Here, 2Ω is twice the angular velocity
of the reference system in the spanwise z-direction, U is the mean velocity in the
x-direction, while y is the wall-normal direction so that −∂U/∂y is the vorticity of
the mean flow in the rotating reference frame. The observed zero absolute vorticity
is physically plausible because it is easy to imagine that the mean rotation of fluid
particles in the inertial frame is zero. The physical origin of this phenomenon is
somewhat unclear. It is not observed in laminar flow but it was, however, observed
in the inviscid region between the developing boundary layers in the entrance of a
rotating channel by Koyama & Ohuchi (1985). In this case it is just an example
of potential flow, but it is notable that roll cells were observed. In an anticyclonic
mixing layer with destabilization due to system rotation, Metais et al. (1995) observed
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a region of approximately zero absolute vorticity. The Kelvin–Helmholtz vortices
were suppressed, and instead quasi-streamwise vortices were observed. In two recent
papers, Lamballais et al. (1996a, b) investigated the effect of system rotation on
coherent vortices in simulated plane Poiseuille flow. A remarkable ordering of quasi-
streamwise vortices was observed in the destabilized layer, together with a region of
approximately zero absolute vorticity away from the wall. The ordered vortices were
more parallel to the streamwise axis than in the non-rotating case.

Several theoretical approaches have been proposed in order to give criteria for the
occurrence of destabilization. A review of some of these approaches was given by
Tritton (1992). The commonly accepted criterion for instability in rotating shear flows
is that the dimensionless parameter

S =
2Ω

−∂U/∂y (1.1)

should be in the interval (−1, 0), which states that instability occurs for anticyclonic
rotation that is not too strong. In fully developed turbulent channel flow, however,
destabilized regions with S < −1 have been observed by Andersson & Kristoffersen
(1995).

It can further be demonstrated that maximum destabilization occurs when S = − 1
2
.

This is the so-called Bradshaw–Richardson criterion, which was originally derived by
Bradshaw (1969). It can also be obtained from the simplified Reynolds stress equation
scheme (SRSE) introduced by Johnston et al. (1972) and further developed by Tritton
(1992). This approach makes no distinction between secondary flow and turbulence, so
one should be careful not to draw firm conclusions on the stability characteristics of
turbulence alone. The Bradshaw–Richardson criterion for maximum destabilization
has also been demonstrated by Cambon et al. (1994) using linear stability analysis and
numerical simulations of flows where large-scale vortices are superimposed on weak
turbulence. In this case, the denominator in (1.1) was replaced by the spanwise r.m.s.
vorticity of the large-scale structures. Lesieur, Yanase & Metais (1991) and Metais et
al. (1992) considered the effect of background vorticity on initially two-dimensional
coherent structures using linear theory and numerical simulation. It was suggested
that maximum destabilization occurs around zero absolute vorticity. They further
reported that slight anticyclonic rotation is destabilizing, but becomes stabilizing
at higher rotation rates. One should bear in mind, however, that various authors
use different definitions of the mean vorticity, and thus of the S-parameter. The
degree of stabilization or destabilization is dependent on the scale of motion under
consideration, and also the initial conditions. The Bradshaw–Richardson criterion is
not very meaningful for the case of steady channel flow, where the destabilized wall
layer exhibits low magnitude of S , whereas the S-value in the central region is close
to −1 (see e.g. Andersson & Kristoffersen 1995). The problem can be circumvented
by using a value of −∂U/∂y from the corresponding non-rotating turbulent flow,
or even −Uw/h (Uw being wall velocity) for laminar plane Couette flow. Maximum
destabilization of laminar rotating Couette flow occurs at S = − 1

2
(at Re = 21, see

Hart 1971), and the flow is unstable when −1 < S < 0.
Bartello, Metais & Lesieur (1994) observed that system rotation created vortex

asymmetry in homogeneous turbulence. Around zero absolute vorticity, anticyclonic
two-dimensional structures were stretched in the longitudinal direction while the
cyclonic structures were stable. This is somewhat analogous to the longitudinal roll
cells observed on the anticyclonic side of Poiseuille flow. Bartello et al. also reported
on the decay of homogeneous turbulence in a rotating frame. With approximately
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zero absolute vorticity, they found that the energy associated with two-dimensional
motion decayed more slowly than the energy of the three-dimensional modes. Bidokhti
& Tritton (1992) performed a detailed experimental study of a rotating free shear
layer, in which the mean shear maintains the same sign throughout the flow. The
Kelvin–Helmholtz instability was found to be suppressed by anticyclonic rotation,
but Bidokhti & Tritton did not observe secondary, or coherent, streamwise vortices.
They found that the Reynolds stress in the direction normal to the rotation axis and
the mean flow exceeded the streamwise stress component with strong anticyclonic
rotation. Restabilization was observed with even stronger anticyclonic rotation.

Recently, Tillmark & Alfredsson (1996) published experimental results on laminar
and turbulent rotating plane Couette flow. In the turbulent case (Reynolds number
Re = 700, rotation number Ro = 0.1), regular roll cells were observed in the visu-
alizations, becoming more pronounced as the rotation rate was increased. (At this
Reynolds number, the maximum rotation number of the experimental apparatus was
approximately 0.12.) At Ro = 0.01 and Re = 200, the roll cells were first observed
to be approximately steady, then a wavy instability was observed, culminating in
breakdown and regeneration of steady roll cells. Secondary and tertiary instabilities
of the differentially heated (laminar) Couette flow have been investigated by Clever &
Busse (1992). As was shown by Hart (1971), this problem is analogous to the rotating
plane Couette flow problem in the case of streamwise-independent disturbances. Thus
the secondary and tertiary instabilities found by Clever & Busse, exhibiting waviness
in the streamwise direction, are not directly analogous to the rotating Couette flow
problem, but one might expect to find similarities. The numerical simulations by
Domaradzki & Metcalfe (1988) of the differentially heated plane Couette flow at rel-
atively high Rayleigh numbers showed streamwise organized structures. For moderate
Rayleigh numbers, the motion was organized with a low turbulence intensity. The
organized flow was able to increase the heat transfer compared to the less organized.
At higher Rayleigh numbers, the flow appeared more disorganized, thus decreasing
the heat transfer. Komminaho, Lundbladh & Johansson (1996) performed simulations
of the turbulent plane Couette subject to stabilizing rotation, and observed that the
flow relaminarized at Ro = −0.060 for a Reynolds number of 750.

Some of the important results that seem to be common to several different rotating
turbulent shear flows can be summarized as follows.

Destabilization occurs for anticyclonic rotation that is not too strong. There seems
to be a close correspondence between laminar and turbulent flow in this respect.

For significant anticyclonic rotation rates, a region of zero absolute vorticity can
be observed away from solid walls.

The destabilizing system rotation tends to generate streamwise vortices. These
vortices can in some cases be similar to the linear Coriolis instability of the laminar
flow.

The turbulence anisotropy is reversed by significant destabilizing rotation, so that
the cross-stream or wall-normal turbulent stress is enhanced and the streamwise stress
component is inhibited.

In this paper we will examine the effects of strong system rotation on turbulent
plane Couette flow. The precise meaning of the term ‘strong rotation’ will be defined
in the next section. Our information is gathered from direct numerical simulations
of the plane Couette flow at different rotation numbers, so that the system rotation
is anticyclonic, and is in most cases destabilizing. The present contribution is a
continuation of our previous paper (BA), where the formation of the roll cells and



Plane Couette flow subject to system rotation 293

their relation to turbulence at a low rotation rate was discussed. Here, we proceed to
higher, destabilizing rotation rates.

2. Strong rotation
We express the dimensionless background vorticity, or rotation number, as Ro =

2Ωh/Uw , where Uw is the prescribed wall velocity. In our flow configuration (see
BA for a sketch), the upper wall at y = h moves with velocity U = Uw , while the
lower wall at y = −h moves with −Uw . The dynamics of the flow are affected by
the difference between the wall velocities, and in the case of system rotation also by
the sign of the absolute vorticity. The Reynolds number is defined as Re = Uwh/ν,
where ν is the kinematic viscosity of the incompressible fluid. In flows with roll-cell
instabilities, it is convenient to decompose the instantaneous velocity and pressure
fields into three components so that u′i(x, y, z, t) = Ui(y) + ũi(y, z) + ui(x, y, z, t), see
BA. In cases where the secondary flow ũi(y, z) contains significant kinetic energy as
compared to turbulence ui(x, y, z, t), and the two-point correlations contain laminar-
like modes, the secondary flow is referred to as roll cells. The secondary flow will also
be classified as two-dimensional, because of its independence of the x-direction. The
following notation will apply for the averaging and decomposition of the velocity
field. The average of φ with respect to time and the x-direction is denoted by φ. (The
turbulence is assumed to be homogeneous in the x-direction and time.) Other spatial
averages are denoted by 〈φ〉η where the subscript signifies averaging along the η-axis.
We use k = 1

2
〈ujuj〉z for the kinetic energy of the turbulence.

The averaged streamwise momentum equation (see BA) yields that the total shear
stress is constant and positive throughout the flow. Here, we note that the sum of the
turbulent shear stress −〈uv〉z and the apparent shear stress −〈ũṽ〉z is positive, i.e.

−σ12 = −〈uv + ũṽ〉z > 0, (2.1)

where σ12 is defined as 〈(ui + ũi)(uj + ũj)〉z .
Consider the stress anisotropy measured by the parameter a = σ22/σ11 − 1. We

define strong rotation as a case in which a > 0 so that σ22 > σ11. For this argument,
we need the transport equations for the stresses σij , applied in the SRSE scheme of
Johnston et al. (1972) and Tritton (1992). If a > 0, the sum of the mean shear and
rotational production terms in the transport equation for σ22 − σ11 is positive, i.e.

−2σ12

(
4Ω − ∂U

∂y

)
> 0. (2.2)

Now −σ12 > 0 from (2.1) and (2.2) thus implies that S < − 1
2
. It must also be required

that the total production of −σ12 is greater than zero, i.e.

σ11

[
∂U

∂y
− a

(
2Ω − ∂U

∂y

)]
> 0. (2.3)

In the present case where ∂U/∂y > 0 throughout the channel, this occurs when
S > −(1 + 1/a). It is anticipated that the terms involving pressure act as sinks for
−σ12 as they do in the non-rotating case, see Bech & Andersson (1996b). In the case
of (2.2), the pressure–strain term φ22 −φ11 is expected to be a sink term. Because σ22

is larger than σ11 and σ33, it can be assumed that φ22 − φ11 = −(2φ11 + φ33) is less
than zero.
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Ro Reτ Ret Ts,1 Ts,2

0.0 82.2 142.4 16.4 1.8
0.1 106.7 97.6 3.4 3.4
0.2 107.2 103.0 8.0 0
0.5 91.0 180.9 6.6 3.9

Table 1. DNS presented in this paper. The Ro = 0 simulation was described in Bech et al. (1995).
The sampling time for the statistics (Ts,1) and fields (Ts,2) databases are given in h/uτ.

One could alternatively use the equation for σ11 and show that S > −1 for the
total production of σ11 to be positive, see for example Johnston et al. (1972). This is,
however, not strictly correct in the case of strong rotation, because in that case, the
pressure–strain correlation becomes a significant source term for σ11.

In summary, for unstable strong rotation

−
(

1 +
1

a

)
< S < − 1

2
. (2.4)

where a > 0. The requirement (2.4) is different from previous findings in that (i) only
strong rotation has been considered, (ii) the lower limit is a weaker formulation than
the conventional criterion S > −1, and (iii) S is excluded from the upper half of the
commonly accepted interval (−1, 0).

3. Numerical simulations and conditional sampling
The direct numerical simulations (DNS) presented in this paper (see table 1) were

run with the eccles code developed by Gavrilakis et al. (1986). The technical details
of the computations with imposed system rotation did not differ significantly from
the simulation of the non-rotating Couette flow, which was described by Bech et
al. (1995). The Reynolds number based on wall velocity and half-channel width
was Re = 1300. The computational domain was 10πh × 2h × 4πh in the x-, y-
and z-directions, respectively. The number of grid points was 256 × 70 × 256 in all
simulations. For simulations with Ro > 0.1, the inhomogeneous distribution of grid
points in the wall-normal direction was somewhat changed, thereby moving the first
grid point from y+ = 0.36 (Ro = 0) to y+ = 0.27.

The results presented in §4 were taken from two kinds of databases: the statistics
database, which consisted of time- and space-averaged quantities, and a database
of samples of the instantaneous flow field (u, v, w, p), i.e. the fields database. In the
latter case, six samples separated by a constant time interval were considered at
each rotation number. The fields database for Ro = 0.2 was an exception because
only one dump was recorded. As will be seen from table 1, different sampling times
were applied for the different Ro. A detection method similar to that described by
Guezennec, Piomelli & Kim (1989) was applied to study the influence of system
rotation on near-wall turbulence-generating events. The quadrant detection scheme,
which should be familiar to many readers, triggers on events with a strong positive
correlation −uv and sorts the events into quadrant 2 (Q2, u < 0, v > 0) and quadrant 4
(Q4, u > 0, v < 0). Guezennec et al. utilized the observation that near-wall turbulence-
generating events usually are detected together with streamwise vortices. This is so
even though the vorticity is not used in the detection algorithm, see for example Bech
et al. (1995). The special feature of the method suggested by Guezennec et al. is that
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the circulation, along a path in the cross-stream plane enclosing possible streamwise
vortices, is calculated for each individual event. The sign of the circulation is then
utilized to decide whether the event should be mirrored in the (x, y)-plane before it is
included in the ensemble average. In this way, the asymmetry of the individual events
is preserved in the ensemble average. Without this precaution, the ensemble average
will show approximately symmetric pairs of counter-rotating vortices.

Here, the detection was carried out at the position where 〈u2〉z attained its near-
wall maximum, and the detection criterion was uv/〈uv〉xz > 7.5, i.e. based on the
instantaneous plane average of the turbulent Reynolds shear stress. For the non-
rotating case, this criterion gave the same number of events as that applied by
Guezennec et al., i.e. −uv/ur.m.s.vr.m.s. > 3.5. For the cases with rotation, the equivalent
limits using their criterion would have been 3 (Ro = 0.1) and 4.5 (Ro = 0.5). To
study whether events near one wall influenced the flow adjacent to the other wall,
the detection was done exclusively near the lower wall at y = −1, while the ensemble
averages extended from y = −1 to y = 1. The detection and conditional sampling
were carried out on the fields database.

4. Results
In the following subsections, the effect of system rotation will be studied from

various points of view. The second subsection is devoted to the study of lengthscales,
while the third subsection treats the changes in the anisotropy of the Reynolds stresses
and the vorticity induced by rotation. In the last subsection, the effect of Coriolis
acceleration on turbulence-generating events in the near-wall region will be examined
through visualization and a qualitative discussion. In the following, x-, y- and z-axes
will be scaled by h, mean velocity by Uw , vorticity by Uw/h and kinetic energies
and Reynolds stresses by the square of the friction velocity at zero rotation rate
(uτ,0). To provide the reader with a concrete idea of the magnitude of system rotation
encountered in this study, we refer to the plane Couette flow apparatus by Tillmark &
Alfredsson (1996). With water as medium and h = 1 cm, a rotation number Ro = 0.1
would correspond to approximately 6 r.p.m. at Re = 1300. In this apparatus, Ro = 0.1
can be obtained up to Reynolds numbers of approximately 800.

4.1. Primary effects of system rotation

Figure 1 shows the change of the mean velocity profile U(y) due to system rotation.
The most apparent effect was the change of the mean shear, as well as its approximate
constancy, in a wide region away from the walls. Using the solid curve corresponding
to Ro = 0 as a reference, it is observed that system rotation makes the mean shear
smaller or larger, depending on the magnitude of the background vorticity. This is
better understood when one considers the absolute vorticity, or almost equivalently
the parameter S which is displayed in figure 2(a). Zero absolute vorticity corresponds
to S = −1. It is readily observed that S is within approximately 10% of −1.0 in
a wide region of the flow, a region that is conveniently referred to as ‘the central
region’. The width of this core region, which extends from about y = −0.5 to y = 0.5
at Ro = 0.1, increased with increasing rotation number. The anisotropy parameter a
is plotted in figure 2(b). There seems to be a correlation between the width of the
regions with S ' −1 and a > 0 for Ro = 0.2 and 0.5, while the corresponding curves
for Ro = 0.1 do not coincide in the same way. Results for Ro = 0.01, already treated
in BA, were included in figure 2 to demonstrate the difference between weak and
strong rotation. In the case of weak rotation a < 0, so that the anisotropy of the
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Figure 2. (a) The vorticity ratio S . (b) The anisotropy parameter a. — - - - —, Ro = 0.01; the
other curves as in figure 1 except the solid lines which represent S = −1 and a = 0, respectively.

stresses was qualitatively the same as in the non-rotating case. |S | was small and did
not approach the salient value of 1.

Figure 1 shows that the near-wall regions with high shear were thinner, and that
the wall shear stress was higher, in the cases with Ro = 0.1 and 0.2. The intermediate
region, in which the mean shear changes most rapidly, was also influenced significantly
by the changes in mean vorticity in the central region. As will be apparent in
the following, the changing distribution of the mean velocity was accompanied by
substantial alterations in the structure of the fluctuating flow field, both in the sense
of secondary motion and the preferred directions of turbulent motions.

In the cases with Ro = 0.1 and 0.2, roll cells were a predominant feature of the flow
field. Streamlines for the former case, obtained as a projection of the secondary flow
in the (y, z)-plane, are depicted in figure 3. Hence, this motion is referred to as the
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Figure 3. Stream function in the cross-flow plane derived from the secondary veloctity field,
Ro = 0.1. Contour increment = 0.02Uwh, broken lines are negative.

Ro 1
2
〈ṽ2 + w̃2〉yz/〈ktot〉y 1

2
〈ũ2〉yz/〈ktot〉y 1

2
〈ṽ2 + w̃2〉yz/〈kc,tot〉y

0.01 0.034 0.30 0.12
0.10 0.49 0.32 0.86
0.15† 0.25

† Data from Poiseuille flow simulation by Kristoffersen & Andersson (1993).

Table 2. Kinetic energy of cross-flow and streamwise secondary flow at different rotation rates.
Here, 〈ktot〉y = 1

2
〈ũj ũj + ujuj〉yz , j = 1, 2, 3 and 〈kc,tot〉y is an abbreviation for the total energy of the

motion in the cross-sectional plane, so that summation should be carried out over j = 2, 3 only.

cross-flow. Cross-flow patterns at some other rotation rates were presented by Bech &
Andersson (1996c). The relative magnitude of the cross-flow energy increased by one
order of magnitude when Ro was increased from 0.01 to 0.1, as can be observed from
the second column in table 2, where we have made a comparison between roll-cell
data from Couette and Poiseuille flow. The third column shows that the magnitude
of the streamwise variations associated with the roll-cell mixing reached a ‘saturation’
level at weak rotation, while the cross-flow energy increased with increasing Ro.
This behaviour is plausible because the Coriolis acceleration redirects streamwise
momentum into the wall-normal direction.

The roll cells were more intense in the Couette flow case than in the Poiseuille flow,
cf. table 2. There are several possible reasons for this. For example, the aspect ratio
was not optimized, in the sense of filling the cross-section with persistent secondary
vortices, in the Poiseuille flow simulation. Moreover, the rotation numbers did not
necessarily correspond to the same degree of destabilization. However, Kristoffersen
& Andersson (1993) remarked that the rotation number 0.15 gave relatively stable roll
cells. Their results did also show that this rotation number gave rise to maximum total
wall shear stress, which at least in Couette flow corresponds to maximum secondary
kinetic energy. Finally, their results showed that the total kinetic energy was relatively
large at this rotation rate. We therefore assume that it is reasonable to compare the
cross-flow kinetic energies of the two lower rows in table 2, which implies that the
roll cell instability is significantly stronger in the Couette flow as compared to the
Poiseuille flow, and that the response of the two flows to rotation is different due to
the differences in the symmetry of the mean vorticity.

The Reynolds numbers based on friction velocity were listed in table 1. Reτ increased
from zero rotation up to Ro = 0.2. The wall shear stress increased by 6% when Ro
was increased from zero to 0.01, while the difference in τw between zero rotation
and Ro = 0.1 was 68%. The effect of rotation is about 10 times greater at Ro = 0.1
than at Ro = 0.01. This is consistent with the tenfold intensification of the cross-flow
as the rotation number is increased from 0.01 to 0.1, cf. table 2. Returning to the
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Figure 4. Volume and time-averaged (a) kinetic energies and (b) r.m.s. vorticity 〈〈ωjωj〉1/2z 〉y .
◦, turbulent; 2, secondary; ×, total. Data from the Ro = 0.01 simulation by BA are included.

streamline topology in figure 3, it is seen that the streamlines were asymmetric with
respect to y = 0. The solid contours represent positive values of the stream function,
i.e. the motion is clockwise, and the dotted contours denote counter-clockwise flow.
The density of streamlines is higher where fluid leaves the near-wall region than in the
stagnation regions in which fluid approaches the wall. This behaviour is somewhat
similar to that observed in Poiseuille flow by Kristoffersen & Andersson (1993), while
it is more complex than that observed in weakly rotating Couette flow (BA).

In figure 4, overall effects of system rotation on kinetic energy and r.m.s. vorticity are
summarized. Note that the dotted lines between the data points are not representative
of the actual behaviour, but they were included to aid the visual interpretation of

the figure. The volume-averaged kinetic energies (〈k̃〉y = 1
2
〈ũj ũj〉yz for the secondary

flow) in figure 4(a) show how the flow is destabilized when Ro is increased from zero
to 0.2. The sum 〈k + k̃〉y was 2.7 times larger at Ro = 0.2 compared to zero rotation.
Note that the sum of the turbulent and secondary kinetic energies was exact to the
accuracy of the direct simulation, while the partition between the two was somewhat
influenced by the finite length of the computational box, as discussed in BA. However,
there is no doubt that the increase of kinetic energy in the destabilized flow was due
to the ordered secondary motion in the roll cells. The damping of turbulence, as
already observed by BA at Ro = 0.01, was even more pronounced at Ro ∼ 0.1. At
Ro = 0.2, the contribution of the turbulent component to the total kinetic energy was
only 18%.
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Figure 5. Streamwise two-point correlations of (a) u+ ũ and (b) v + ṽ at y = 0.
Legend as in figure 1. The abscissae is scaled by h.

We chose to plot the dimensionless r.m.s. vorticity, i.e. 〈ωjωj〉1/2z for the turbulent
component, because its magnitude is directly comparable with the rotation number
or the vorticity of the laminar flow (which is 1 in the non-dimensional form applied
here). In figure 4(b), the average over the y-direction is shown. The sum of the
turbulent and secondary r.m.s. vorticity behaves qualitatively similarly to 〈k + k̃〉y ,
except in the case of weak rotation (Ro = 0.01) in which the damping of turbulence
leads to an overall reduction of r.m.s. vorticity. At higher rotation rates up to 0.2,
the total r.m.s. vorticity increases because the enhancement of the secondary vorticity
is more significant than the damping of the turbulent vorticity. It is also observed
that the secondary motion of the roll cells is relatively energetic, but contains less
vorticity, compared to the turbulent motion. This difference is obviously due to the
large lengthscale of the roll cells as compared to the dissipative turbulent eddies.

It is noteworthy that maximum destabilization occurred at a rotation number close
to the magnitude of the mean centreline vorticity at Ro = 0, namely |−∂U/∂y| = 0.22.
At higher rotation rates, the structure of the flow was observed to change. This is
readily seen in figure 4(a), and to some lesser extent in 4(b). The secondary flow
component was damped due to the disappearance of the steady roll cells. Even
though the turbulence intensity increased significantly, the disappearance of the roll
cells was associated with restabilization as both kinetic energy and r.m.s. vorticity
(enstrophy) decreased. The concepts of destabilizing and restabilizing rotation are
somewhat ambiguous here, because maximum destabilizing of the flow corresponds to
maximum stabilization of turbulence, while restabilization of the flow corresponds to
destabilization of turbulence. Maximum damping of turbulence, i.e. relaminarization,
was observed at Ro = 1.0. This is not shown in the figures, and the relaminarization
could equally well have occurred at a somewhat lower rotation rate.

4.2. Lengthscales

Centreline values of the two-point velocity correlations

Rjk
(
rxi
)

=

(
〈[uj(t, x) + ũj(x)][uk(t, x+ rxi) + ũk(x+ rxi)]〉xz

〈[uj(t, x) + ũj(x)][uk(t, x) + ũk(x)]〉xz

)
are displayed in figures 5 and 6. Note that secondary and turbulent fluctuations
were sampled together and that the secondary component makes a more ‘visual’
contribution than the turbulent component. The most noticeable feature of the two-
point statistics was the large magnitude of the streamwise correlations for large
separations at the rotation rates 0.1 and 0.2. This is most clearly visible in figure 5(b)
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Figure 6. Spanwise two-point correlations of (a) u+ ũ and (b) v+ ṽ at y = 0. Legend as in figure 1.

where the wall-normal velocity component is almost fully correlated with itself, i.e. as
in laminar flows.

The streamwise correlations of u + ũ in figure 5(a) attained a lower level than
R22(rx) at large separations for Ro equal to 0.1 and 0.2, indicating that the streamwise
component of turbulence was large compared to the wall-normal component at y = 0.
As was shown by BA, streamwise turbulence is produced by the secondary flow, while
little energy is transferred from the secondary flow to turbulent fluctuations in the
(y, z)-plane.

From R11(rz) in figure 6(a) it can be observed that the variation of the stream-
wise secondary flow in the z-direction was composed of a periodic variation with
wavelength Lz/3, i.e. dictated by the computational box, and a harmonic with wave-
length Lz/9. These wavelengths were more visible in the one-dimensional spectra (not
shown). The roll cells observed at weak rotation rates were single-mode, like the roll
cell instability in laminar flow computed using linear stability theory, see BA.

The peculiar streamwise oscillations of R11(rx) at Ro = 0.2 indicate that some wavy
instability, similar to that found by Clever & Busse (1992) in laminar flow, exist also
in the turbulent case. By phase-averaging the instantaneous flow field at this rotation
rate, using the wavelength 5.28h obtained from R11(rx) and the spanwise wavelength
of the roll cells, it was possible to recognize the oscillations in R11(rx) as a periodic
streamwise variation of the secondary flow. By considering a phase-averaged roll cell
pair (not displayed here), it became evident that the cross-sectional extent varied
and that the flow towards the wall between the counter-rotating vortices exhibited
an oscillating spanwise component. Thus the flow pattern was similar to the wavy
instability described by Clever & Busse (1992).

In the cases where roll cells were practically absent, i.e. for zero rotation and
Ro = 0.5, an ‘inter-component exchange’ of streamwise lengthscale was observed.
By comparing these two rotation rates in figures 5(a) and (b), one observes that
the lengthscale of the wall-normal velocity fluctuations increased with rotation, while
the lengthscale of the streamwise velocity fluctuations decreased. The correlation
curves for Ro = 0 and Ro = 0.5 are observed to interchange roles, and the same
tendency can, to some extent, be observed in figure 6. Thus, due to strong system
rotation there seems to be an ordering of the flow structures with significant y-
directed momentum, and conversely, break-up into smaller scales of flow structures
with significant streamwise momentum. In both cases, however, the plane Couette
flow seems to promote flow structures with a strong degree of streamwise coherence,
so that the dimensionality (concerning axes) is moderately influenced by rotation,
while the componentality (concerning components of velocity and vorticity) is more
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Figure 7. Taylor (a) component scale and (b) directional scale derived from turbulence statistics.
Legend as in figure 1.

severely affected. This subject will be further discussed in the next subsection, where
turbulence anisotropy is considered.

The conventional definition of the Taylor microscale, as given by for example
Tennekes & Lumley (1972), is based on the assumption of isotropic small-scale
turbulence. Because system rotation tends to change the anisotropy of turbulence, we
calculated the Taylor microscale as a tensorial quantity. We stress that we applied
turbulent quantities to calculate the lengthscales, so that they are different from those

that can be deduced from figures 5 and 6. The component λ11, where λ2
11〈(∂u/∂x)2〉z =

〈u2〉z , follows the conventional definition of the Taylor microscale. Similarly, we can

compute the component λij = (〈u2
i 〉z/〈(∂ui/∂xj)2〉z)1/2, no summation, where the first

index refers to the velocity component, and the latter to the direction of the derivative.
A ‘Taylor component scale’ λui can now be defined, for example by contracting
λu = (λ1jλ1j)

1/2. These vector components are called component scale because they
are independent of the direction, but depend on the actual (velocity) component. The
Taylor component scales are visualized, for three different Ro, in figure 7(a). It should
be commented that the x-direction seemed to be the most significant, in the sense
that the conventional Taylor microscale λ11 behaved qualitatively similarly to λu. The
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same observation was made for λ21 and λv , as well as for λ31 and λw , and can only be
due to the fact that streamwise gradients were small as a result of elongated turbulent
structures.

When discussing the results in figure 7(a), one should first of all distinguish between
the wall region and the central region. For λu, it is readily observed that the scale was
significantly shorter at the highest rotation rate. This observation is consistent with
figure 5(a). The reduction of the lengthscale of the streamwise fluctuations is thus
observed to occur everywhere in the channel. It is notable that the lengthscales were
similar for zero rotation and Ro = 0.1 even though there were large differences with re-
spect to the kinetic energy and the large-scale field. The larger scales were present close
to the wall, indicating the existence of low-speed streaks and quasi-streamwise vortices.

The middle diagram of figure 7(a) shows λv , and again we observe that the
lengthscale of the wall-normal fluctuations at Ro = 0.5 was much larger than at zero
rotation away from the wall. Again, if λu and λv are compared, the curves for the
two rotation numbers zero and 0.5 interchange roles in the central region. The curve
for Ro = 0.1 approximately follows the largest of the two in all three diagrams of
figure 7(a). The lower values for λv close to the walls were a consequence of damping
of wall-normal motions. The last lengthscale is λw , which is quite interesting because
the velocity component involved, w, is parallel with the axis of rotation and thus
affected only indirectly by the Coriolis acceleration. Turbulent fluctuations in the
z-direction are sustained by pressure–strain correlations, so that the intensity of this
motion should be quite independent of whether 〈v2〉z is smaller or larger than 〈u2〉z , i.e.
the rotational-induced anisotropy should be of little importance. On the other hand,
system rotation can alter the structure of turbulence, which again would affect λw .
From the figure it is seen that non-zero system rotation tends to generate longer scales,
except close to the centreline. In the immediate vicinity of the wall, the lengthscale is
largest for Ro = 0.1, as it was for λu and λv , which probably can be ascribed to a low
magnitude of turbulent vorticity. The relatively large increase in λw close to the wall,
from zero rotation to Ro = 0.5, is quite surprising after studying the behaviour of λu
and λv . There seems to be an ordering of the spanwise motion along the walls. Around
say y = −0.75, λw follows λv rather than λu if we compare Ro = 0.5 with zero rotation.
Thus the increase of λv was partly accompanied by an increase in the lengthscale
λw of the w fluctuations, while the decrease in the lengthscale for the u fluctuations
was less influential on λw . These observations are consistent with the ordering and
intensification of streamwise vorticity observed by Lamballais et al. (1996a).

It is also possible to compute a ‘Taylor directional scale’, for example λx = (λj1λj1)
1/2.

Here, the componentality is eliminated by summing over all velocity components or
normal stresses, while the directionality is retained. We have visualized the directional
scales in figure (7b). Considering λx, we observe that elongated coherent motions were
responsible for large lengthscales close to the walls. This effect was weaker at the
highest rotation rate. This may be due to distortion, by the system rotation, of the
streaky structures containing streamwise momentum. In the central region, however,
λx is similar in the cases with zero and maximum rotation. The large x-wise lengthscale
for Ro = 0.1 seems to indicate a weak x-dependence due to the roll cells, but also a
low effective Reynolds number. For λy , there are small variations, presumably due to
the restrictions on the flow imposed by the solid walls. However, the structures seem
to be somewhat more uniform at the highest rotation rate.

In the z-direction, turbulence is homogeneous, while the secondary flow component
is periodic. λz is observed to behave quite oppositely as compared to λx, at least
away from the wall. The z-direction is of special interest here, because the Taylor–



Plane Couette flow subject to system rotation 303

(a) (b)

0
0

0.03

y
–0.5–1.0

0.01

0.02

0
y

–0.5–1.0

è
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Legend as in figure 1.

Proudman theorem predicts that the flow field becomes independent of this direction
in the limit of infinitely high rotation. Obviously, the rotation rate Ro = 0.5 is too low
for application of this theorem. Besides, if the flow were to become two-dimensional,
then it would also relaminarize. (This occurred when Ro was increased to 1.0 in the
present study, but the limit for relaminarization is probably somewhat lower than 1.)

There are, at least, two scalings for the small-scale motions. In channel flow, we
usually apply the wall scaling, using friction velocity uτ and viscosity ν. The half-
channel width, measured in these units, is identical to Reτ given in table 1. The
Kolmogorov scale for length, η = (ν3/ε)1/4, where ε is the dissipation rate of turbulent
kinetic energy, is less frequently used in channel flow applications. In the case of
rotation, however, it is of interest to investigate the effect on the lengthscale of the
dissipative eddies. In figure 8, both the turbulent (a) and total (b) dissipation were
applied to calculate the Kolmogorov scale. The only significant difference between
the two diagrams was associated with the curves for Ro = 0.1. By including the
secondary dissipation, the Kolmogorov scale decreased significantly, especially very
close to the wall. Here, the roll cells created high shear rates and thus increased
the dissipation. By including the secondary dissipation, however, the Kolmogorov
lengthscale loses some of its physical meaning because the secondary motion was
large-scale and not cascade-like. We therefore concentrate on figure 8(a). For zero
rotation and Ro = 0.1, the behaviour was qualitatively similar. The roll cells damped
the turbulence and increased the Kolmogorov lengthscale. The dissipation rate was
high in the immediate vicinity of the walls, and decreased towards the centreline. At
Ro = 0.5, the Kolmogorov scale illustrates an important point, namely the high and
almost uniform dissipation rate throughout a substantial portion of the channel. This
behaviour is qualitatively different from the two other cases and can be associated
with the relatively high magnitude, as well as the approximate constancy, of the mean
shear, clearly shown in figure 1.

4.3. Enstrophy and kinetic energy

The variation of the r.m.s. vorticity (the square root of twice the enstrophy) across
the channel is shown in figure 9. The turbulent enstrophy follows the same trend
from the centreline and towards the wall in the cases with Ro 6 0.2. The decrease
observed in the central region, when Ro was increased from zero to 0.1, was caused
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Figure 9. R.m.s. vorticity: (a) turbulent, and (b) secondary. Legend as in figure 1.

by damping of the x- and z-components† of vorticity. The increased level of turbulent
enstrophy at Ro = 0.5 was caused by a substantial growth of the x-directed vorticity.
The approximate constancy of the enstrophy in a large portion of the flow could
be recognized in all three components and can be associated with the high, almost
uniform shear rate observed at Ro = 0.5. The approximate constancy of the vorticity
at Ro = 0.5 was observed indirectly in figures 7 and 8. The behaviour of the secondary
r.m.s. vorticity depicted in figure 9(b) reflects the relative importance of the secondary
flow at Ro = 0.1 and 0.2. At these rotation rates, the secondary vorticity exhibited
high values at the wall due to both the streamwise and spanwise components. The
r.m.s. secondary wall shear-stress gave a friction velocity that was 70% of the total
uτ. In the core region, the growth of secondary enstrophy was caused by the x- and
y-components, while the z-directed secondary vorticity was approximately unaltered
by rotation.

Figure 10 displays an anisotropy invariant map (AIM, see Lumley 1978) for the
turbulent vorticity tensor

vij =
〈ωiωj〉z
〈ωkωk〉z

− δij

3
, (4.1)

at two different y-values. The second and third invariants are

II =
1

2

(
viivjj − v2

ii

)
, III =

1

3!

(
viivjjvkk − 3viiv

2
jj + 2v3

ii

)
. (4.2)

Note that v2
ii and v3

ii denote the traces of v2
ij = vikvkj and v3

ij = vikvklvlj , respectively. Close
to the walls, there seems to be a trend towards increasing isotropy with increasing
rotation rate. At Ro = 0, the vorticity tensor was approximately axisymmetric, with
the z-component significantly larger than the other two. (Here, it should be noted that
one-component vorticity and two-component velocity may typically coincide. It is a
bit more difficult to imagine axisymmetric vorticity than axisymmetric velocity.) The
main effect of increasing the rotation number to 0.1 was to increase the streamwise
component relative to the other components of vorticity, thereby departing from
axisymmetry, and also from one-componentality. By further increasing the rotation
rate to Ro = 0.5, the growth of the streamwise component made it approximately equal
to the z-component which was slightly damped, i.e. the vorticity became approximately
axisymmetric, with one component (y) smaller than the others. In summary, the effect
of system rotation in the near-wall region was to increase the streamwise component
and to slightly decrease the spanwise component of turbulent vorticity.

† By x-component of vorticity we mean the r.m.s. of ωx or the 11-component of the vorticity
tensor 〈ωiωj〉z .
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The behaviour of the vorticity anisotropy at the centreline y = 0 was quite different
and one can readily observe a departure from isotropy, or even an ‘inverse return to
isotropy’. If one were to imagine that the rotation number was suddenly decreased
from 0.5 to zero, the path† followed by the vorticity anisotropy would resemble
that derived from return-to-isotropy simulations of homogeneous turbulence after
removal of the mean shear, see Lee & Reynolds (1985). Both high mean shear as well
as strong system rotation represent distortions to the turbulent flow field that increase
the anisotropy of the vorticity tensor. A significant change induced by increasing
the rotation rate from zero to 0.1 was, as shown in figures 4 and 9(a), to damp the
turbulent enstrophy. There was, however, an increase in the y-component of vorticity
which made the vorticity tensor more anisotropic. From figure 9(a) it is known that
the turbulent r.m.s. vorticity at y = 0 was at least 50% larger at Ro = 0.5 as compared
to the other rotation numbers. If we compare the two rotation numbers 0 and 0.5,
the tendency towards axisymmetry with one leading component at Ro = 0.5 was due
to an approximate doubling of the streamwise r.m.s. vorticity.

The kinetic energy of turbulence is depicted in figure 11(a) and the secondary
kinetic energy in figure 11(b). At weak rotation rates (0.01, treated in BA), the near-
wall peaks in k, characteristic of non-rotating near-wall flows, were clearly visible.
These peaks were due to the maxima in 〈u2〉z , and disappeared at higher rotation
rates. As discussed above, the turbulent kinetic energy was lowest when Ro ∼ 0.1. (It
should be remarked that the turbulent shear stress −〈uv〉z became negative around
y = ±0.6 in this case.) The almost uniform level of k for Ro ∼ 0.1 was due to
significant secondary production of 〈u2〉z as discussed in BA. The growth of the
turbulent kinetic energy when Ro was increased from 0.2 to 0.5 took place in the
central region of the flow and was due to the growth in 〈v2〉z , which is plotted in figure
12. The disappearance of the roll cells was associated with a substantial increase in
〈v2〉z in the central region, which caused the change of the distribution of k in figure
11(a).

The kinetic energy k̃ associated with the secondary flow exhibited peaks in the
near-wall region at Ro = 0.1 and 0.2 and resembled k in the non-rotating case, i.e.
the streamwise component 〈ũ2〉z was large compared to 〈ṽ2〉z and 〈w̃2〉z and exhibited
maxima in the near-wall regions. The very high intensity of the secondary flow was
due to the mixing by the regular roll cells, combined with high shear (figure 1), and

† We only have access to 3 discrete points on this ‘path’.
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exceeded the intensity of the turbulent motion. If we consider the change in k+ k̃ when
Ro is increased from 0.2 to 0.5, we observe a small decrease at the centreline (about
5%) and a large decrease (up to about 70%) closer to the walls. It is evident that
ordered structures like the secondary flow are able to maintain more energetic motion
than turbulence, and that these motions, at least partially, disappeared when Ro was
increased to 0.5. The energy distributions of figure 11 exhibit the two different flow
regimes induced by strong rotation observed in this study, and it is obvious that the
differences between these two regimes are not caused by the present decomposition
and averaging technique, because the differences would still be clearly visible in a plot

of k + k̃.

4.4. Rotational effects on near-wall turbulence-generating events

Before considering the conditional averages, we will discuss time-averaged contribu-
tions to the total shear stress −〈uv+ ũṽ〉z from the quadrants in the (u+ ũ, v+ ṽ)-plane.
Time-averaged results do not suffer from the ‘subjectivity’ of conditional averages,
and they are thus a good starting point for the analysis. We have made a comparison
between the quadrant analysis of the present Couette flow and Poiseuille flow simu-
lations by Kristoffersen & Andersson (1993) at Re = 2900, with and without system
rotation, in figure 13. The results for Poiseuille flow at Ro = 0.5, where the rotation
number is based on the bulk mean velocity, are previously unpublished data. In the
diagram, no distinction is made between the secondary and turbulent components of
the velocity fluctuations. As discussed above, the secondary component was probably
a by-product of the finite computational domain at these rotation rates and thus of
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Ro nQ2 nQ4 Reτ Ret

0.0 0.25 0.22 82.2 142.4
0.1 0.12 0.19 106.7 97.6
0.5 0.26 0.14 91.0 180.9

Table 3. Number of Q2 and Q4 detections per unit area (made dimensionless with h2).

little significance in the case of Couette flow. Kristoffersen & Andersson observed
splitting and merging roll cells at Ro = 0.5, so that their results for the shear stress
at Ro = 0.5 may have had a significant secondary component.

Figure 13 shows that the contribution from quadrant 2 (Q2, ejections) events
was only marginally influenced by rotation in the case of Poiseuille flow. The same
tendency can be seen in the Couette flow. Note that the contributions from Q2 and
Q4 must be equal at the centreline in the case of Couette flow due to the antisymmetry
of the mean velocity distribution. Shifting the attention to the fourth quadrant, we
observe the most striking effect of system rotation, namely a substantial reduction of
the relative importance of Q4 events (sweeping motions). There was also a significant
decrease in the (negative) contribution from Q1 events, which, to some extent, can be
considered as the outcome of sweeps being reflected by the wall.

Detection of Q2 and Q4 events was carried out at the three rotation numbers
0, 0.1 and 0.5. The ensemble averages to be discussed in this section was obtained
using the detection method described in §3. After detecting the sweeps and ejections,
the maximum of the turbulent shear stress in each event was found. The coordinate
system of each event was translated to make the origin coincide with this maximum
before the events were ensemble averaged. There were, of course, two sets of ensemble
averages, one for Q2 and one for Q4 (The ensemble average of e.g. u with respect
to Q2 detection is denoted by 〈u〉Q2). Between 300 and 600 presumably independent
events of each kind were detected at the non-zero rotation numbers. At zero rotation,
the time increment between the fields in the database was about one half of that
applied in the other two cases, but the number of detections was similar. The number
of events detected, divided by the size of the (x, z)-plane, is tabulated in table 3, while
the sampling time was given in table 1 (Ts,2). The modest number of Q4 detections at
Ro = 0.5 is in accordance with the time-averaged statistics displayed in figure 13. The
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relatively few events detected at Ro = 0.1 could be a result of strong secondary flow
and suppression of turbulence. It is not likely that the threshold value for detection,
discussed in §3, was too high. At Ro = 0.1, a great deal of the turbulence production
was caused by secondary shear (for example ∂ũ/∂z) in the core region, cf. figure 11(a),
so that the near-wall region was of less relative importance. In both cases of non-zero
rotation, the number of detections was reduced as compared to Ro = 0. Even if
the volume-averaged turbulent kinetic energy attained its maximum at Ro = 0.5, the
energy was differently distributed (see §4.3), so that less turbulence was produced in
the near-wall region.

To visualize the kind of events detected and the primary effect of the Coriolis
acceleration, cross-sections through the ensemble averages at z = 0 are presented in
figure 14 for Q2 events and in figure 15 for Q4 events. The Coriolis acceleration made
the v-component relatively more important, as can be inferred from the direction
of the velocity vectors. The angle between the velocity vector at the detection point
and the wall was approximately doubled for both sweeps and ejections when Ro
was increased from 0 to 0.5. At Ro = 0.1, the events seem to be confined to a thin
layer near the wall, presumably due to squeezing by the roll cells. For Ro = 0.5, the
events exhibited higher shear near the wall, and the region of streamwise motion was
shortened as compared to the Ro = 0 case. Away from the wall, the v-component was
relatively more important than in the non-rotating case so that the y-directed motion,
as visualized by the velocity vectors, was clearly visible at the centreline y = 0 in
the case of Ro = 0.5. Evidently, the events were responsible for a larger transport of
momentum across the centreline, i.e. the size, as well as the intensity, of the cross-flow
eddies were increased.

After inspection of several cross-sections in various directions of the ensemble
averages of the different flow variables, it became evident that the most significant
differences were found when the Q2 ensemble average at Ro = 0.5 was compared
with the non-rotating case. In the following, a few of a very large number of possible
visualizations will be displayed, and we have chosen to concentrate on the streamwise
vorticity. In figures 16 and 17, a comparison is made between visualizations of velocity
vectors in the cross-flow plane for Q2 events. In figure 16(a–d), the wall (y = −1) is
located at the bottom and the view extends to the centreline at y = 0. In figure 17,
the entire cross-section is shown from the lower to the upper wall. In the non-rotating
case one can observe the typical streamwise vortex on the right-hand side of the
ejection. Similar diagrams can be found in Guezennec et al. (1989) and Nishino &
Kasagi (1991), while a discussion can be found in Bech et al. (1995). Upstream of
the detection point, in figure 16(a), spanwise motion generates a vortex close to the
wall. Downstream the vortex axis points away from the wall and forms an angle with
the streamwise axis. Further downstream, the vortex became practically invisible. The
spanwise lengthscale of the vortex in figure 16 was approximately the same as in the
two studies cited above. Nishino & Kasagi suggested a streamwise lengthscale of 300
wall units. In the present study, we found that this lengthscale was closer to 250 wall
units by considering contour plots of ensemble-averaged streamwise vorticity.

Turning our attention to the ensemble average at Ro = 0.5 in figure 17, we observe
that although the qualitative behaviour is similar to that for Ro = 0, some significant
differences are visible. Upstream of the detection point, a large-scale vortex is observed
at the left-hand side. This vortex can be followed downstream, and is actually longer
than the ejection vortex at the right-hand side. It is notable that the vortex was fairly
undistorted and that its axis was almost parallel to the x-axis. This is in agreement
with the recent finding of Lamballais et al. (1996a). Likewise, the ejection vortex,
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Figure 14. Ensemble-averaged velocity vectors (〈u〉Q2, 〈v〉Q2) for Q2 events in the plane z = 0. (a)
Ro = 0; (b) Ro = 0.1; (c) Ro = 0.5. Same vector scaling applied in all plots. The detection was
carried out near the lower wall at y = −1, only the lower half-channel is shown.

clearly visible in figure 17(b), seems to be relatively stable. The final picture 17(f) is
quite similar to a roll cell pair. However, the intensity of this vortical motion was an
order of magnitude smaller than the intensity of the secondary motion at Ro = 0.1.
Corresponding visualizations of the Q4 ensemble average showed that the sweeps
were associated with significant streamwise vorticity for Ro = 0.5, but the streamwise
lengthscale was significantly smaller than what was the case for Q2 events. Thus, the
rotational effect on the sweeps was less pronounced.

Consider the rotation number based on the conditionally averaged vorticity, i.e.
〈Ro〉Qn = −2Ω/(W + 〈ωz〉Qn), where n can be 2 or 4. In the interval y < −0.4, 〈Ro〉Q4

was greater than unity while 〈Ro〉Q2 was less than unity so that only Q2 events can be
said to be in the destabilized range. A further observation was that the conditionally
averaged vorticity 〈ωz〉Qn was anticyclonic in the case of n = 2 and cyclonic in the
case of n = 4. Thus, the relatively low impact of the sweeps can be a result of local
stabilization The large streamwise lengthscales exhibited by the Q2 events, and not
the Q4 events, at the highest rotation rate are in agreement with the observations of
Bartello et al. (1994), i.e. anticyclonic two-dimensional structures are stretched in the
longitudinal direction while the cyclonic structures are not.

5. Final discussion and conclusions
The evaluation of the results from simulations of rotating turbulent plane Couette

flow is not straightforward because of the lack of experimental data and other
numerical simulations. We have, however, verified our results for the non-rotating
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Figure 15. As figure 14 but for Q4 events.

turbulent case as well as the laminar rotating case. In Bech et al. (1995) it was observed
that the near-wall turbulence was in agreement with available results from plane
Poiseuille flow. The latter point is interesting, and supports the use of experimental
and numerical results from the rotating turbulent plane Poiseuille flow for comparative
purposes.

The consistency of the simulations with rotation can be evaluated on the basis of
rotational effects on the laminar flow configuration, i.e. the roll cell instability and
also the wavy instability, and the analogous effects on the Poiseuille flow (observed
on the anticyclonic side). The roll cell instability occurs in linear stability analysis of
the rotating laminar plane Couette flow, and the occurrence of such structures in the
turbulent case was therefore physically plausible. The breakup of the two-dimensional
roll cells into three-dimensional wavy rolls or time-dependent (so-called vacillating)
instabilities, has been predicted for the almost analogous Rayleigh–Bénard case by
Clever & Busse (1992). DNS of the turbulent Rayleigh–Bénard case by Domaradzki
& Metcalfe (1988) showed that the regular streamwise structures broke up at high
Rayleigh numbers.

Considering the combined effects on turbulence and roll cells, the present inves-
tigation compares favourably with the investigations by Johnston et al. (1972) and
Kristoffersen & Andersson (1993). In both flows it has been observed that destabi-
lizing system rotation with Ro ∼ 0.01 resulted in a sudden increase in the intensity
of the fluctuating flow field. Similarly, strong system rotation was accompanied by
a region of approximately zero absolute vorticity. Roll cells have been observed in
both flows, although much more intense in the Couette case. The reinforcement of
the wall-normal fluctuations and the attenuation of the streamwise fluctuations due
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Figure 16. (〈w〉Q2, 〈v〉Q2) in the cross-flow plane at different x-positions at Ro = 0.
(a) x = −0.61; (b) x = 0; (c) x = 0.61; (d) x = 1.23.

to destabilizing rotation have been observed in Poiseuille flow as well as Couette flow.
Finally, the tendency for system rotation to favour ejecting motions and suppress
sweeping motions in the destabilized wall layer has been observed in simulations of
both types of flow. Some care must be taken here because rotating Poiseuille flow
exhibits both a destabilized and a stabilized side. Thus, total relaminarization, which
has to occur on both sides of the centreline, cannot be expected to occur at the same
rotation number in the two flows. Also the effect of a certain rotation rate can be
different between the two flows.

Both Poiseuille flow and Couette flow exhibited destabilized regions where the
anisotropy a > 0. These regions with reversal of the anisotropy of the fluctuating
flow field (turbulent + secondary) were approximately correlated with regions where
S ∼ −1. It is interesting to note that S could be somewhat less than −1, which is in
accordance with the criterion (2.4). The condition of strong rotation, a > 0, seems to
be sensible for channel flow as long as the region close to the wall is not considered
and there are reservations for the region of the Poiseuille flow where the mean vorticity
changes sign. The extent of the region with a > 0 increased with increasing rotation
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Figure 17. (〈w〉Q2, 〈v〉Q2), Ro = 0.5. (a) x = −0.61; (b) x = 0; (c) x = 0.61; (d) x = 1.23;
(e) x = 1.84; (f) x = 2.45.

rate, and the existence of such a region was independent of the existence of roll cells,
but associated with an ordering and intensifying of the streamwise vorticity.

In all cases with destabilization, the streamwise vorticity was more predominant
than in the non-rotating case. Secondary, as well as coherent, streamwise vorticity has
been shown to be strongly favoured by anticyclonic system rotation. It is convenient to
speak of two different regimes of strong rotation. The first regime was that of roll cells,
or secondary streamwise vorticity, high wall shear stress and low turbulence intensity.
For practical purposes, mixing and heat conduction will be significantly amplified
in this regime. This regime was also observed in the experiments of Tillmark &
Alfredsson (1996). The spanwise lengthscale of the roll cells observed by Tillmark &
Alfredsson is in perfect agreement with the present results. The roll cells observed
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in the turbulent flow are similar to those caused by the Coriolis acceleration in the
laminar flow. As observed in the experiments, the roll cells are less prone to three-
dimensionalization when the flow is turbulent. The roll cells change shape as they
intensify, and become more similar to the roll cells observed in rotating Poiseuille
flow in that the most intense motion is associated with fluid ejecting from the wall.
Maximum destabilization occurred when the background vorticity was similar to the
mean vorticity of the core region in the non-rotating flow, i.e. at Ro ' 0.2.

The second regime was that of streamwise turbulent vortices originating from the
anticyclonic wall layer. In this regime, the wall shear stress and the turbulence intensity
was more similar to the non-rotating case. However, the structure of turbulence was
significantly altered after the roll cells broke up. Both directionality and dimensionality
were different from the conventional channel flow. The dominance of the streamwise
vorticity was deduced from both time-averaged statistics and conditional averages. A
similar remarkable ordering and intensifying of the streamwise vorticity was observed
in rotating Poiseuille flow simulations by Lamballais et al. (1996a). They observed
that the vorticity was generated mainly through the stretching terms in the transport
equation for the r.m.s. vorticity. Comparing the second regime with the non-rotating
case, it is interesting to observe that the Taylor component scale λu decreased, while
the Taylor directional scale λx did not (at least away from the wall). This was
because the long regions of coherent streamwise momentum were partly replaced
by coherent streamwise vortices, so that the componentality of the most energetic
motion increased from one to two. The distribution of the turbulent motion changed
with system rotation so that the relative importance of the central region increased.
At the highest rotation rate Ro = 0.5, this region exhibited higher mean shear and a
broader range of scales of motion as compared to the non-rotating case.

Finally, it is interesting to consider the dimensionality of the mean and secondary
flow fields. From linear stability theory, it is known that destabilization is equiv-
alent to a two-dimensionalization of the initially one-dimensional flow. Indeed we
observe the same phenomenon in the turbulent Couette flow. Moreover, when the
total kinetic energy decreases, i.e. when the flow restabilizes as Ro gets close to
0.5, the two-dimensional secondary flow vanishes. It is obvious that the most sig-
nificant destabilization is due to the ordering of the flow so that energy is kept in
large-scale motions and partly prevented from travelling down the cascade to the
dissipative scales. In the case of restabilization, the secondary flow field was observed
to three-dimensionalize, i.e. the roll cells broke up in the streamwise direction, and
the dissipation increased significantly, thereby reducing the overall kinetic energy.

We are grateful to the referees for their constructive comments. The computing
time for the simulations was provided by the Norwegian Supercomputing Committee
(TRU).
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